skip to main content


Search for: All records

Creators/Authors contains: "Grishin, Evgeni"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Accretion discs in active galactic nuclei (AGNs) foster black hole (BH) formation, growth, and mergers. Stellar mass BHs migrate inwards under the influence of hydrodynamical torques unless they encounter a region where the torque flips sign. At these migration traps, BHs accumulate and merge via dynamical or gas-assisted interactions, producing high-frequency LIGO/Virgo/KAGRA (LVK) gravitational wave (GW) sources and potentially cutting off the supply of extreme mass ratio inspirals that would otherwise make low-frequency, LISA-band GWs. In this paper, we study the interplay between different types of migration torques, focusing especially on the ‘thermal torques’ generated by the thermal response of the AGN to embedded stellar-mass BHs that accrete through their own mini-discs. In contrast to previous work, we find that Type I torques cannot produce migration traps on their own, but thermal torques often do, particularly in low-mass AGN. The migration traps produced by thermal torques exist at much larger distances (∼103−5 gravitational radii) than do previously identified Type I traps, carrying implications for GW populations at multiple frequencies. Finally, we identify a bifurcation of AGN discs into two regimes: migration traps exist below a critical AGN luminosity, and do not at higher luminosities. This critical luminosity is fit as $\log _{10} L_{\rm AGN}^c = 45 {\!-\!} 0.32 \log _{10}{(\alpha /0.01)}$ where α is the Shakura–Sunyaev viscosity parameter, a range compatible with recent claims that LVK GWs are not preferentially associated with high-luminosity AGN.

     
    more » « less
  2. Abstract

    In addition to a supermassive black hole (SMBH), the central parsec of the Milky Way hosts over 100 massive, high-velocity young stars whose existence, and organization of a subset of them in one, or possibly two, misaligned disks, is puzzling. Due to a combination of low medium density and strong tidal forces in the vicinity of Sgr A*, stars are not expected to form. Here we propose a novel scenario for their in situ formation: a jetted tidal disruption event (TDE) from an older wandering star triggers an episode of positive feedback of star formation in the plane perpendicular to the jet, as demonstrated via numerical simulations in the context of jet-induced feedback in galactic outflows. An overpressured cocoon surrounding the jet shock-compresses clumps to densities high enough to resist the SMBH tidal field. The TDE rate of 10−5–10−4yr−1per galaxy, out of which a few percent of events are jetted, implies a jetted TDE event per galaxy to occur every few million years. This timescale is interestingly of the same order of the age of the disk stars. The mass function predicted by our mechanism is top heavy. Additionally, since TDEs are isotropic, our model predicts a random orientation for the disk of stars with respect to the plane of the galaxy and, due to the relatively high TDE rate, can account for multiple disks of stars with uncorrelated orientations.

     
    more » « less
  3. ABSTRACT TIC 470710327, a massive compact hierarchical triple-star system, was recently identified by NASA’s Transiting Exoplanet Survey Satellite. TIC 470710327 is comprised of a compact (1.10 d) circular eclipsing binary, with total mass $\approx 10.9\!-\!13.2\, \rm {M_{\odot }}$, and a more massive $\approx 14\!-\!17\, \rm {M_{\odot }}$ eccentric non-eclipsing tertiary in a 52.04 d orbit. Here, we present a progenitor scenario for TIC 470710327 in which ‘2 + 2’ quadruple dynamics result in Zeipel–Lidov–Kozai oscillations that lead to a contact phase of the more massive binary. In this scenario, the two binary systems should form in a very similar manner, and dynamics trigger the merger of the more massive binary either during late phases of star formation or several Myr after the zero-age main sequence, when the stars begin to expand. Any evidence that the tertiary is a highly magnetized (∼1–10 kG), slowly rotating blue main-sequence star would hint towards a quadruple origin. Finally, our scenario suggests that the population of inclined compact multiple-stellar systems is reduced into coplanar systems, via mergers, late during star formation or early in the main sequence. The elucidation of the origin of TIC 470710327 is crucial in our understanding of multiple massive star formation and evolution. 
    more » « less